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ABS'PRACT 

The impact of using nuclear (Feactor and isotope) power systems on Space 

Much of t h e  information presented i s  derived fro& t h e  current NASA 
Sta t ion  and Space Base is discussed, and candidate nuclear power systems a r e  
compared. 
Phase-B Space S ta t ion  s tudies .  8 a 

IN'JRODUCTION 

Based on t h e  Space Task Group recommendations (1) t o  the  President,  t h e  
NASA's space program of the  1970's includes t h e  deveiopment of new capabi l i -  
t i e s  f o r  operations i n  space. As a p a r t  of th i s  e f f o r t ,  t he  NASA is planning 
as one of i t s  major objectives i n  t h e  1980's a l a rge  ( ~ 5 0  men) autonomous 
Space Base. As t he  i n i t i a l ,  but evolutionary s t ep  toward the  Space Base, t h e  
NASA i s  present ly  conducting a Phase-B Defini t ion Study of a Space S ta t ion  
( ~ 1 2  men) which would be launched in t he  l a t e  1970's. In  order t o  meet t h e  
l i f e t ime  and e l e c t r i c a l  power requirements of Space S ta t ion  and Space Base, 
nuclear ( reactor  and isotope) power systems a r e  a t t r a c t i v e  candidates. 

Early manned spacecraft  such as Mercury and Gemini were able  t o  use bat-  . 
For t e r y  power which was  adequate fo r  t h e  shor t  time and l o w  powers required.  

t h e  extended f l i g h t s  of Gemini and Apollo (up t o  2 wks duration) b a t t e r i e s  . 
were no longer acceptable and the  hydrogen-oxygen f u e l  c e l l  was developed t o  
meet these requirements. The Apollo Applications Program, Orbi ta l  Workshop, 
w i l l  extend th i s  duration t o  56 days. 
a r ray  w i l l  be used. 
(6 kWe) a re  not s u f f i c i e n t l y  advanced i n  t h e i r  development Cycle, t h i s  mis- 
sion, scheduled f o r  launch i n  1973, i s  too  ear ly  i n  time t o  permit considera- 
t i o n  of a nuclear system. 

For t h i s  application, a la rge  so la r  
Because nuclear systems of t h e  required power l e v e l  

The purpose of t h i s  paper is  t o  describe t h e  current concepts of Space 
S ta t ion  and Space Base, discuss t h e  impact of using nuclear power systems on 
Space S ta t ion  and Space Base, and t o  compare the  candidate Nuclear Power 
Systems . 
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Because t h e  current  def in i t ion  s tudies  a r e  competitive, many d e t a i l s  of 
t h e  in tegra t ion  of nuclear power systems i n t o  space s t a t ion  and base cannot 
be discussed a t  t h i s  meeting. However, we w i l l  t r y  t o  cover t h e  major con- 
s iderat ions.  A descr ipt ion and status of t h e  candidate Nuclear Power Systems 
can be found i n  Refs. 2 and 3.  - - 

SPACE STATION/SPACE BASE DESCRIPTIONS AND REQUIREMENTS 

The Space S ta t ion  is  defined as a completely self-contained module with 
systems and provisions f o r  a 12-man crew with experimental programs. It i s  
t o  be designed fo r  a minimum operational l i f e  of 10 years and t o  be capable 
of being used as a module i n  t h e  assembly of t h e  Space Base. The Space Base 
i s  defined as an autonomous assembly of general  purpose and special ized mod- 
ules  i n  low ear th  o r b i t  capable of supporting a crew of 50 men (with growth 
beyond t h e  50-man s i z e ) ,  mult i -discipl inary experiments and appl icat ions pro- 
gram, and the  o r b i t a l  operations of other manned and unmanned spacecraft .  It 
t o o  s h a l l  have a minimum operational l i f e  of 10 years. 
e s sen t i a l ly  be a laboratory i n  space where a broad range of physical  and bio- 
l og ica l  experiments would be performed. 

Thus, Space Base would 

Fig. 1 presents a br ie f  summarization of Space Stat ion and Space Base 
requirements, as specif ied i n  the  current  NASA Space Stat ion Phase-B Defini- 
t i o n  study. The key points  t o  be derived from Fig. 1 a r e  t h e  10-year minimum 
operational l i f e  requirement; t h e  var ied o r b i t a l  requirements; t h e  zero and 
a r t i f i c i a l  g rav i ty  requirements; and the  l a rge  estimated power requirements. 
A breakdown of t h e  estimated e l e c t r i c a l  load requirements fo r  S ta t ion  and Base 
is shown i n  Fig. 2 .  The power necessary t o  support t he  crew and t h e  experi- 
ments are t h e  major loads. I n  t h e  event of a power outage, most of these loads 
can be dropped except f o r  t he  power required t o  sus ta in  crew support and safe-  
t y .  Thus, i n  order t o  support t h e  crew, backup power must be provided f o r  t h e  
length of time necessary t o  maintain or replace t h e  f a i l e d  power system. 

Another important consideration regarding Space S ta t ion  i s  t h a t  a t  pres- 
ent  i t s  launch weight i s  l imited t o  about 120,000 pounds which includes 10,000 
pounds al located t o  t h e  experiments, but it does not include any payload allow* 
ance fo r  t h e  a r t i f i c i a l - g r a v i t y  capabi l i ty .  Furthermore, there  is  a require-  
ment t h a t  a s ingle  launch be used t o  place t h e  complete S ta t ion  module i n  or- 
b i t .  Both t h e  weight l imi ta t ion  and the  s ing le  launch requirement of Stat ion,  
the  var ie ty  of t h e  mission o r b i t a l  a l t i t u d e s  and incl inat ions,  and t h e  payload 
capabi l i ty  of t h e  launch vehicle,  a l l  become important t radeoffs  i n  t h e  selec-  
t i o n  of t h e  power system. The launch vehicle  being considered f o r  both S ta t ion  
and Base i s  a Saturn V der ivat ive termed t h e  INT-21 which uses t h e  S-I-C and 
S-I1 s tages  with t h e  payload i n  place of t h e  SIVB and Apollo Command Service 
module. 
INT-21 is  shown i n  F i g , . , 3  f o r  t h e  mission o rb i t s  and inc l ina t ions .  
t he  o r b i t  and inc l ina t ion  of prime i n t e r e s t  fo r  performing t h e  many and various 
experiments i s  about 260 n. miles and 5 5 O ,  where t h e  payload capabi l i ty  i s  
about 190,000 pounds. 
quired f o r  t he  a r t i f i c i a l - g r w i t y  equipment and launch vehicle margin, thus, 

To i l l u s t r a t e  t he  tradeoff problem, the  payload capabi l i ty  of t h e  
Currently, 

It is  estimated t h a t  about 70,000 pounds w i l l  be r e -  
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t he  120,000-pound weight l imi ta t ion  fo r  S ta t ion  cannot be exceeded i f  the  
mission i s  t o  be performed a t  t h e  o r b i t  of i n t e r e s t .  It is  of i n t e r e s t  t o  
note t h a t  of t he  120,000 pounds al located t o  t h e  S ta t ion  module, about 20,000 
pounds can be 'a l loca ted  t a  t he  Ipower system. 

t 

SPACE STATION/SPACE BASE CONCEPTS 

Since September 1969, two Space S ta t ion  Phase-B Definit ion Studies have 
been underway a t  McDonnell Douglas under contract  with t h e  NASA Marshall Space 
F l ight  Center and a t  North American Rockwell under contract  with the  NASA 
Manned Spacecraft Center. 
Base, resu l t ing  from t h e  Phase-B Study, are presented t o  provide perspective 
i n  t h e  discussions of nuclear power systems t h a t  follow. 

The following concepts fo r  Space S ta t ion  and Space 

Fig. 4 shows a concept of a 1 2 - m a n  space s t a t i o n  having f i v e  decks, a 
diameter of about 33 feet ,  and weighing approximately 120,000 pounds. As  
indicated,  t he  s t a t i o n  is  capable of docking several  "dependent and f r ee -  
flying" experimental modules. 
power system depicted i n  t h i s  pa r t i cu la r  concept i s  a Solar Array/Battery 
system. 

A l o g i s t i c s  vehicle  i s  shown end docked. The 

Two concepts of Space Base are shown i n  Figs. 5 and 6. These two con- 
cepts, although very similar, were arr ived a t  independently by t h e  two Phase-B 
study contractors.  Both concepts show two reac tor  power systems located a t  t h e  
end of long booms approximately 200 t o  300 f e e t  i n  length. Long booms a r e  used 
t o  minimize the  cone angle fo r  shielding and hence shield weight, which w i l l  be 
discussed i n  more d e t a i l  l a t e r .  I n  es tabl ishing the  shield cone angle, con- 
s idera t ion  must be given t o  t h e  d i r ec t  dose and s c a t t e r  dose t h a t  might be seen 
by l o g i s t i c s  vehicles t h a t  approach t h e  Space Base and by " f r ee  flying" experi- 
ment modules t h a t  w i l l  be docked t o  t h e  Base. In  order t o  insure Base autonomy 
and safety,  two reactor  power systems are used. Each power system i s  ra ted  a t  
50 kWe i n  order t o  supply the  required 100 kWe. I n  the  event of a loss  of one 
of t he  power systems, t h e  other system would supply su f f i c i en t  power t o  support 
t h e  crew. Also, it could be increased i n  power t o  meet t he  t o t a l  e l e c t r i c a l  
load requirement for t h e  period of time necessary t o  perform maintenance or 
u n t i l  a replacement power system could be brought up and ins ta l led .  
be noted t h a t  each power system has i t s  own rad ia tor  for r e j ec t ion  of t h e  waste 
heat from t h e  energy conversion cycle. In  t h e  concept Shawn i n  Fig. 5, t h e  
a r t i f i c i a l  g rav i ty  requirement i s  obtained i n  t h e  spokes which r o t a t e  about t h e  
i n e r t i a l l y  s t ab i l i zed  hub. The concept shown i n  Fig. 6 uses two s e t s  of ro- 
t a t i n g  spokes, ro t a t ing  i n  opposite direct ions,  t o  meet t he  a r t i t i c i a l  g rav i ty  
requirement. It is  es t im%ed t h a t  about f i v e  t o  s i x  separate launches, of 
INT-21 Saturn c l a s s  vehicles,  a r e  required t o  bui ld  the  Space Base i n t o  t h e  
concepts shown. 

It should 
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IMPACT OF USING NUCLEAR POWER SYSTEMS FOR SPACE STATION 
AND SPACE BASE 

I n  order t o  meet t h e  25 kWe power requirement of Space Stat ion,  both a 
Solar Array/Battery Power System and Nuclear (isotope and reac tor )  Power 
Systems are being considered i n  t h e  Phase-B Definit ion Study. 
only a Nuclear Reactor Power System i s  being considered t o  supply t h e  100 kWe 
required for  Space Base. In  any case, t h e  se lec t ion  of t he  power system is  
very important i n  meeting t h e  mission objectives of Stat ion and Base. 
example, S ta t ion  and Base must have both a r t i f i c i a l  and zero gravi ty  opera- 
t i o n a l  capabi l i ty .  I n  addition, S ta t ion  and Base must be capable of support- 
ing a l a rge  number and var ie ty  of experiments ranging from ear th  survey ex- 
periments t o  astronomy experiments; some of which w i l l  be accomplished by 
manned “ f r ee  f ly ing  experiment modules.’’ 
and t h e  10-year minimum operational l i f e  of S ta t ion  and Base must be consid- 
ered i n  the  se lec t ion  of a pa r t i cu la r  power system. 
there  a r e  several  important advantages and disadvantages t o  using a Nuclear 
Power System when compared t o  a Solar  Array/Battery Power System, and these 
are shown i n  Fig. 7.  

A t  t h i s  time, 

For 

Thus, a l l  of t he  mission objectives 

In  terms of t he  preceding, 

I n  general, t h e  nuclear power systems a r e  r e l a t i v e l y  compact. Thus, t he  
drag, physical  interferences,  and shadowing t h a t  would be imposed on t h e  Sta- 
t i o n  or Base by use of a l a rge  Solar Array would be minimized. (For example, 
a Solar Array system could require  i n  excess of 10,000 sq  E t  i n  array area t o  
provide t h e  25 kWe needed f o r  Space Stat ion.)  Low drag r e f l e c t s  i t se l f  i n  
reduced s t a t i o n  keeping propulsion requirements; and more important, having a 
r e l a t i v e l y  f r e e  spacecraft  surface permits grea te r  f l e x i b i l i t y  f o r  mission 
operations and configuration opt i m i  z a t  ion. 

The performance of a nuclear e l e c t r i c  power system i s  not dependent on 
t h e  space environment, swings i n  so l a r  ac t iv i ty ,  o r b i t a l  a l t i t ude ,  or o r b i t a l  
incl inat ion;  a l l  of which are major perturbations t o  a Solar Array System. 

Once Space S ta t ion  and/or Space Base a r e  operational,  it is  reasonable t o  
expect t h a t  t h e  current  estimated power requirements of 25 and LOO kWe w i l l  i n -  
crease subs tan t ia l ly .  Here again t h e  nuclear power system has a decided advan- 
tage.  For example, as more advanced higher power reactors  and energy conversion 
systems become avai lable ,  they can be used without major modification t o  S ta t ion  
or Base configurations. 
Array system i s  t o  use l a rge r  and l a rge r  arrays.  

The only way t o  achieve higher powers with the  Solar 

The po ten t i a l  long useful  l i f e  of a nuclear power system i s  important i n  
order t o  minimize resupply requirements, overa l l  cost ,  and a l s o  enhance inde- 
pendent operation. 

O f  course, t he re  a re  two important disadvantages i n  using a Nuclear Power 
Safe u t i l i z a t i o n  of system - nuclear sa fe ty  and t h e  rad ia t ion  environment. 

t h e  Nuclear Power System must be assured t o  some acceptable l e v e l  f o r  both 
operational and aerospace nuclear sa fe ty  i n  order t o  minimize or eliminate any 
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hazards t o  t h e  crew or t h e  general  population. 
c lear  sa fe ty  may be found i n  Ref. - 4. 

A discussion of aerospace nu- 

Now, having discussed severa l  important advantages and disadvantages of 
Nuclear Power Systems compared t o  Solar Array Power Systems, t he  impact of 
using a Nuclear Power System on Space S ta t ion  and/or Space Base w i l l  be d i s -  
cussed i n  terms of th ree  important integrat ion constraints;  t h e  rad ia t ion  en- 
vironment, maintenance and/or replacement of t h e  power system, and t h e  waste 
heat reJec t ion  rad ia tor .  

Radiation Ewironment 

In  order t o  understand the  implications of integrat ing a Nuclear Power 
System on Sta t ion  or Base, it is  important t o  define the  major elements t h a t  
typ ica l ly  comprise a Nuclear Power Systems. 

A Nuclear Power System is  comprised of five major elements as i l l u s t r a t e d  
i n  Fi e The nuclear heat source may e i the r  be a l i q u i d  metal cooled reac tor  
( F i e  8 a ) )  or it may consis t  of isotope fueled capsules (Fig. 8 ( b ) ) .  Heat i s  
t ransfer red  from t h e  nuclear heat  source t o  a power conversion system by means 
of a heat exchanger. For t h e  Isotope Power System t h e  heat i s  t ransfer red  by 
radiat ion;  and f o r  t h e  Reactor Power System t h e  heat i s  t ransfer red  t o  t h e  heat  
exchanger by t h e  pumped l i q u i d  metal. The power conversion system, which may 
be a s t a t i c  or a dynamic system, t r ans fe r s  i t s  cycle waste heat  t o  a rad ia tor  
from where the  waste heat i s  re jec ted  t o  space by radiat ion.  Finally,  t he re  
i s  t h e  sh ie ld  required t o  reduce t h e  rad ia t ion  dose from t h e  nuclear heat 
source t o  some permissible leve l .  

I n  general, t h e  sh ie ld  w i l l  comprise t h e  dominant weight f o r  t he  Reactor 
Power System, weighing of t h e  order of tens  of thousands of pounds. Thus, i n  
order t o  minimize sh ie ld  weight, a combination of separation distance (i. e,, 
dis tance from the  reac tor  t o  the  crew and/or experiment) and "shaped 431" radia-  
t i o n  shielding must be u t i l i zed .  Since s v e l d i n g  calculat ions a re  very d i f f i -  
c u l t  and t i m e  consuming, it i s  important t o  es tab l i sh  crew tolerances,  experi- 
ment tolerances,  and the  mission p r o f i l e  as soon as possible.  Even then, t h e  
sh ie ld  analyses w i l l  be i t e r a t i v e  involving t radeoffs  among the  spacecraft  
configuration, rad ia t ion  tolerance,  t h e  power system, and mission prof i le ;  and 
must a l s o  include t h e  hazards t o  t h e  crew and experiments from space r ad ia t ion  
(i. e., ga lac t ic ,  so l a r ,  and Van Allen rad ia t ion)  

A t  present,  t he re  a r e  two rad ia t ion  dose planning constraints  fo r  S ta t ion  
and Base crews. For the  space environment it i s  25 rem and f o r  6 months, 
whole body, 5 em depth dose; and f o r  any on-board nuclear source, it is 27 rem 
f o r  6 months. Both of these dose constraints  a r e  important considerations i n  
determining t h e  shielding required t o  pro tec t  t h e  crew. The 25  rem space en- 
vironment l imi t a t ion  has an important e f f ec t  on o r b i t a l  parameters. This ef- 
f e c t  i s  i l l u s t r a t e d  i n  Fig. 9 where t h e  unshielded 50 percent probabi l i ty  
depth dose (5  em) from ear th  trapped rad ia t ion  i s  shown fo r  t h e  mission o r b i t a l  
a l t i t u d e s  and inc l ina t ions .  It can be seen t h a t  for a l t i t u d e s  up t o  about 
270 n. miles and any incl inat ion,  t h e  allowable dose i s  not exceeded and no 
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shielding is  required.  A t  300 n. miles, however, shielding would have t o  be 
provided t o  t h e  e n t i r e  Space S ta t ion  module t o  insure meeting the  c r i t e r i a .  
The sh ie ld  rkquired fo r  t h i s  s i t ua t ion  might exceed 10,000 pounds. Since, 
as discussed previously, S ta t ion  weight is  a c r i t i c a l  parameter, rad ia t ion  
from t h e  space environment tends t o  drive t h e  mission t o  o r b i t a l  a l t i t udes  
below about 270 n. miles. 

Now, using t h e  25 rem dose constraint  f o r  a nuclear Power System; and 
considering t h e  weight constraint  fo r  Stat ion,  t h e  payload capabi l i ty  of t h e  
launch vehicle,  and t h e  f a c t  t h a t  many "free f ly ing  experiment modules" and 
the  Space Shut t le  w i l l  f l y  i n  t h e  v i c i n i t y  of S ta t ion  and Base or be docked; 
a sh i e ld  geometry and sh ie ld  weight can be established. 
Reactor Power System, shielding must be provided i n  a l l  direct ions.  The e f -  
f e c t s  of separation distance and shielded diameter on sh ie ld  weight are i l l u s -  
t r a t e d  i n  Fig. 10 f o r  a Reactor Power System u t i l i z i n g  a 600-thermal kilowatt  
uranium-zirconium hydride fueled compact reactor .  For dose constraints  of 
2 m-rem/hour a t  t h e  dose plane, 200 m-rem/hour everywhere else around t h e  r e -  
ac tor  a t  a distance of 125 f e e t ,  and a ga l l e ry  height of 20 inches ( i .e. ,  t h e  
ga l l e ry  i s  t h a t  volume within t h e  sh i e ld  between t h e  reactor  and power con- 
version system as shown i n  Fig. 8 ) ,  sh ie ld  weight is  very sens i t i ve  t o  both 
separation distance and shielded diameter. For example, increasing t h e  sepa- 
r a t ion  distance from 50 t o  200 feet  for  a shielded diameter of 50 feet  r e s u l t s  
i n  a reduction i n  sh ie ld  weight from about 110,000 t o  40,000 pounds. 
t h i s  reac tor  with a complete 4n sh ie ld  so t h a t  t he  dose r a t e  would be 2 m-rem/ 
hour a t  a distance of 65 feet  everywhere around the  sh ie ld  would require  a 
sh ie ld  weight of about 137,000 pounds. For t h e  Space Base configurations shown 
i n  Figs. 5 and 6, preliminary estimates ind ica te  t h a t  t h e  sh i e ld  would weigh of 
t he  order of 40,000 t o  50,000 pounds. 
f o r  neutron at tenuat ion with tungsten and depleted uranium f o r  gamma shielding. 

In  t h e  case of a 

To sh i e ld  

These shields  u t i l i z e  lithium-hydride 

Shielding f o r  t h e  Isotope Power System i s  simpler and t h e  penal t ies  a r e  
l e s s  severe than t h a t  fo r  t h e  reactor  system. For example, preliminary e s t i -  
mates ind ica te  t h a t  the  shielding required f o r  a 25  kWe Isotope (Plutonium-238 
Heat Source) Brayton Power System would weigh of t he  order of a few thousand 
pounds. 

A t  present, no exis t ing reac tor  or power conversion system has demon- 
strated an operating l i f e  anywhere near t he  10-year operational l i f e  required 
fo r  Space S ta t ion  and Space Base. The operating l i f e  of these  two subsystems 
might be of t he  order of 2 t o  5 years. Therefore, a requirement f o r  integra-  
t i o n  of a Reactor Power System is the  capabi l i ty  f o r  easy maintainabi l i ty  
and/or replacement. 
p l e t e  replacement of t he  power conversion system i s  undetermined. However, 
maintenance i s  f a c i l i t a t e d  by using an intermediate heat exchanger, as i l l u s -  
t r a t e d  i n  Fig. 8, which prevents t h e  t r ans fe r  of act ivated l i qu id  metal coolant 
from t h e  reac tor  behind t h e  sh i e ld  in to  t h e  power conversion system. Regard- 
l e s s  of whether or not maintenance can be performed, it i s  l i k e l y  t h a t  a t  some 
point  i n  time t h e  Reactor Power System w i l l  have t o  be replaced. Disposal of 

To date, t h e  question of l e v e l  of maintenance versus com- 
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t h e  spent or replaced reactor  system is  a nuclear sa fe ty  problem. A t  present,  
th ree  means of reactor  disposal a r e  being considered; boost i n t o  higher o rb i t ,  
and Earth or ocean impact with recovery. 

The same considerations j u s t  discussed f o r  t h e  Reactor Power System apply 
For e x a p l e ,  i f  to t h e  Isotope Power System with a few noteworthy exceptions. 

maintenance i s  performed on t h e  power conversion system, it is  f a c i l i t a t e d  by 
t h e  low rad ia t ion  dose l eve l s  from t h e  isotope heat source and by the  f a c t  
t h a t  t h e  heat generated by t h e  isotope is  t ransfer red  t o  the  heat  exchanger 
by rad ia t ion  ( see  
source and the  Brayton heat exchanger permits t h e  heat source t o  be pivoted 
away from the  power conversion system during maintenance or replacement. 
t h e  isotope most l i k e l y  t o  be used i s  Plutonium-238 a,nd i t s  half  l i f e  i s  
87 years, planned replacement of t h e  isotope heat source would not be contem- 
p la ted  during t h e  10-year mission. 

).  This rad ia t ion  coupling between t h e  isotope heat 

Since 

Another fac tor  t o  be considered regarding Nuclear Power System replace- 
ment is  t h e  time required t o  launch a replacement power system, and t h e  s i z e  
and a v a i l a b i l i t y  of t h e  launch vehicle.  That is ,  t i m e  i s  re f lec ted  i n  t h e  
requirements of an adequate backup power supply on Sta t ion  and Base t o  provide 
power t o  support t h e  crews; and t h e  weight of t he  replacement power system w i l l  
d i c t a t e  t h e  s i z e  of launch vehicle required. 

It should be noted t h a t  maintenance and replacement a re  a l s o  a require- 
ment f o r  a Solar Array/Battery Power System. For example, replacement of t h e  
solar ar ray  panels must be considered s ince the  system may degrade, experience 
has shown, more than 30 percent i n  power i n  5 years due t o  t h e  space environ- 
ment. Also, t h e  b a t t e r i e s  (which are t h e  dominant weight of t h e  system) w i l l  
have t o  be replaced on some regular time bas is .  

Waste Heat Rejection Radiator ,  CI I l l  1 i 

The las t  major area of in tegra t ion  impact of t he  Nuclear Power System is  
t h e  waste heat  r e j ec t ion  rad ia tor .  
t i o n  and Space Base, and due t o  t h e  c h a r w t e r i s t i c s  of t h e  candidate power 
conversion system t h a t  might be used, la rge  rad ia tor  areas w i l l  be required. * 

A t  t h e  50 kWe power leve l ,  rad ia tor  areas c m  range from about 2300 t o  5000 
square f e e t  depending on the  power conversion system. Large rad ia tor  area r e -  
quirements not only present problems t o  t h e  spacecraft  designer, but they a l s o  
c rea te  problems of in tegra t ion  i n  t h e  launch vehicle.  

A t  t he  required power l eve l s  of Space Sta- 

NUCLEAR POWER SYSTEM COMPARISONS 

A t  present, t he re  is  only one reactor  heat source t h a t  may be considered 
f o r  appl icat ion t o  Space S ta t ion  and Space Base, and t h a t  i s  t h e  uranium- 
zirconium hydride (SNAP-8) reactor  under development by the  AEC. 
i s  designed f o r  a thermal power of 600 kW a t  a 1300' F l i qu id  metal (NaK) cool- 
an t  o u t l e t  temperature. 

This reactor  
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Based on t h e i r  current development programs and technological s t a tus ,  
there  a r e  only three  power conversion systems, which when mated t o  t h e  uranium- 
zirconium hydride reactor ,  are candidates f o r  appl icat ion t o  Space S ta t ion  and 
Space Base s t a r t i n g  i n  the  l a t e  1970's. These systems a r e  t h e  mercury Rankine, 
i n e r t  gas Brayton, and thermoelectric, which are discussed by English- ( 2 )  and 
Wilson (3). 

- 

In t h e  case of an Isotope Power System, only one system, t h e  Isotope 
Brayton Power System which u t i l i z e s  a Plutonium-238 heat source and is  cur- 
r en t ly  under development, i s  the  only candidate f o r  appl icat ion t o  Space Sta-  
t i o n  and Space Base. 

In  order t o  s e l e c t  a power system fo r  applica-l;io:T t o  Space Station. and/or 
Space Base, se lec t ion  c r i t e r i a  must be estaklished. 
f ica t ion ,  these c r i t e r i a  can be s t a t e d  as shown i n  Other fac tors  be- 
ing equal, these c r i t e r i a  state t h e  obvious - a power system t h a t  embodies t h e  
l e a s t  constraints ,  with the  g rea t e s t  operational f l e x i b i l i t y ,  and a t  a minimum 
cost  is  desired. 

At t h e  r i s k  of cn-ersimpli- 

Launch Vehicle Constraint: A s  noted e a r l i e r ,  t h e  Space S ta t ion  module 
including the  experiments i s  l imi ted  t o  approximately 120,000 pounds fo r  t h e  
i n i t i a l  launch weight. O f  t h i s ,  about 20,000 pounds can be al located t o  t h e  
power system. The requirement t h a t  Space S ta t ion  be capable of use i n  polar 
and sun-synchronous o rb i t s  a l s o  presents a weight constraint .  Regarding Space 
Base, it is not so  severely weight l imited.  A s  noted e a r l i e r ,  f i v e  t o  s i x  
Saturn c l a s s  launches w i l l  be required t o  assemble Space Base. One of t he  
launches is  a l loca ted  t o  the  power system. However, t h i s  launch must not ex- 
ceed t h e  t o t a l  launch vehdcle payload capabi l i ty .  Thus, t h i s  pa r t i cu la r  c r i -  
t e r i a  drives t h e  se lec t ion  toward a low weight system. 

Operational F l ex ib i l i t y :  The power system should minimize interference 
with t h e  Space S ta t ion  or Base l o g i s t i c s  operations i n  t h e  near v i c i n i t y  of 
t h e  spacecraft .  
is t h e  rad ia t ion  environment which could d i c t a t e  angles of approach, l o i t e r  
time and location, rendezvous corridors,  cad docking posi t ions.  In  t h e  case 
of Space Stat ion,  t h e  power system must permit operation i n  both a zero-G and 
a r t i f i c i a l -G  mode. I n  t h e  Space Base, t h i s  i s  not such a d i s t i n c t  dr iver  s i n m  
both a r t i f i c i a l -G  and z e r o 4  a r e  simultaneously provided while multiple reac tor  
systems and physical s i z e  minimize e f f ec t s  on l o g i s t i c s  operations. However, 
f o r  Space Ease it i s  necessary t o  provide addi t ional  f l e x i b i l i t y  to accommodate 
increasing capabi l i ty ,  and hence, power l eve l s .  Fais drives t h e  se lec t ion  
toward t h e  system with growth capabi l i ty  and minimum e f fec t  on configuration. 

The primary e f f e c t  t o  considere here, f o r  t he  nuclear system, 

Cost Effectiveness: This c r i t e r i a  impacts t w o  charac te r i s t ics  of system 
se lec t ion  as shown i n  Fig. 11. The development of any of these nuclear power 
systems or a l a rge  Solar  Array t o  f l i g h t  qua l i f ied  s t a tus  w i l l  be costly;  per- 
haps severa l  hundred mil l ion dol la rs .  To minimize development costs  it would 
therefore  be desirable  t o  s e l e c t  a common power conversion system f o r  s t a t i o n  
and base which could meet a l l  of t h e  various mission requirements, thus avoid- 
ing a mul t ip l i c i ty  of cos t ly  developmert e f fo r t s .  
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Operating l i f e  of the  power system is  a l so  an important fackor. Replece- 
ment of t h e  nuclear heat source or complete power system w i l l  be d i f f i c u l t ,  
complex, po ten t i a l ly  hazardous, and hence cost ly .  The requirement f o r  replace- 
ment should then be minimized by emphasizing long l i f e .  S i rce  replacement is, 
however, inevi table  f o r  e i the r  t he  power conversion system or  heat source, t h e  
system selected should lend i tself  t o  maintenance and/or replacement u t i l i z i n g  
the  l o g i s t i c s  vehicle  i f  possible.  This would avoid t h e  Eecessity of a sepa- 
r a t e  l a m c h  vehicle.  Payload costs  t o  o r b i t  by separate  launch are apy)roxi- 
mately $1000 per  pound while f o r  t h e  re-usable l o g i s t i c s  vehicle  these costs  
are ant ic ipated t o  be of t he  order of $100 per  pow-d. The l o g i s t i c s  vehicle 
or Space Shut t le  imposes both weight and volume l imitat ions,  approximately 
15,000 t o  40,000 pounds and volume t o  f i t  within a 15-fooL diameter by 60-foot 
leng",lr_ 

Thus, i n  order t o  keep the  t o t a l  S ta t ion  md Ease progrza costs  ~ C I  a m i c i -  
mum, t h e  cost  effectiveness c r i t e r i a  tends 'GO dr ive t h e  power system se lec t ion  
toward a s ingle  ( 2 ,  e., appl icat ion t o  both S ta t ion  and S s e )  , long-lived, and 
eas i ly  replaceable power system, 

c OMPARIS ON 

It i s  now possible  t o  compare t h e  various candidate nuclear power systems 
against  t h e  c r i t e r i a  given above. Fig. 1 2  shows these systems compared a t  ' 

t he  50 kWe power l e v e l  fo r  Space Base. Since a t  present, a reactor  thermo- 
e l e c t r i c  power system is  not a candidate at  t h e  58 kWe power leve l ,  only t h e  
Mercury Rankine and Brayton systems are shown. 
of t h e  two reactor  systems are comparable and dominated by t h e  shield.  
system would, however, meet t h e  weight requirements fo r  separate  launch of a 
100 kWe system using two reactors .  
both reac tor  systems exceed t h e  Space Shut t le  payload capabi l i ty  of about 
40,030 pounds. 
would be necessary, making it possible  t h a t  t h e  Spece Shut t le  could be u t i l i z e d .  
Radiator areas a r e  shown t o  give an idea of surface requirements f o r  waste heat  
re jec t ion .  Prom t h e  dimensions of t h e  Space S k r b " c e  payload given above it . 
would appear t h a t  t h e  m i m u m  cy l indr ica l  rad ia tor  %ha% could be accommodated 

It i s  possible  t h a t  a deployable rad ia tor  could be 
used which would m e l i o r a t e  t h i s  problem i f  prac t ica l .  

It is  apparent t h a t  t h e  weights 
Either 

Wlen considering power system replacement, 

Eowever, it is  possible  t h a t  only p a r t i a l  sh i e ld  replacement 

0 square f e e t .  

Another important fac tor  shown is  t h e  wide var ia t ion  i n  thermal power re- 
quired f o r  t he  two reac tor  systems. 
s ion  e f f ic ienc ies  which a r e  of t he  order of 8 %rad 2 8  percent, respectively,  f o r  
t h e  Rankine and Brayton systems. 
due t o  i t s  higher turbine i n l e t  temperature. Assuming t h a t  both of t h e  reac tor  
systems a r e  capable of operation at t h e  same reac tor  coolant o u t l e t  temperature, 
reactor  l i f e  w i l l  be strongly influenced by thermal power level, As this power 
l e v e l  i s  reduced, l i f e  w i l l  increase a:;d frequency of replacement and hence 
cost  w i l l  be reduced. It i s  therefore ,  proper t o  i n fe r  %hat reactor  l i f e  would 
bias  t h e  se lec t ion  toward the lowest thermal power. 

This r e f l e c t s  t he  inherent power conver- 

The isotope Brayton is  25  percent e f f i c i e n t  
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Caution should be used i n  drawing any conclusion relative t o  t h e  isotope 
system. Though it i s  t h e  l i g h t e s t  and should be the  longest l i ved  (87 y r  
half  l i f e )  the re  a r e  two mitigating fac tors  not included i n  t h i s  somewhat s i m -  
p l i f i e d  comparison. These a r e  safe ty  and ava i l ab i l i t y .  Present planning 
seems t o  ind ica te  a mul t ip l ic i ty  of heat sources (approximately four or more 
i n  t h i s  case) and conversion systems (four a t  12.5 kWe each). It is  therefore,  
l i k e l y  that  t h i s  type of system would be modularized f o r  i n t eg ra l  ra ther  than 
separate  launch. The isotope Plutonium-238 i s  not avai lable  i n  unlimited quan- 
t i t i e s .  The quant i ty  of f u e l  ava i lab le  would have t o  be assessed against  other 
requirements f o r  t h e  f u e l  i n  the  time frame of in t e re s t .  

The same comparison, but a t  2 5  kWe is  shown i n  Fig. 13'for Space Stat ion.  
Since t h e  reactor  system weight i s  dominated by i t s  shield,  which is  roughly 
equal f o r  any of t h e  conversion systems, t h i s  comparison treats a typ ica l  r e -  
ac tor  system. 
reac tor  thermoelectric system which i s  a candidate a t  t he  25 kWe power leve l .  
Using a typ ica l  weight i s  warranted, s ince only weight i s  necessary fo r  th i s  
comparison, based on the  se lec t ion  c r i t e r i a .  A Solar  Array/Battery system i s  
a l s o  shown fo r  perspective. 

It should be noted t h a t  t he  weight shown is  a l s o  typ ica l  f o r  t h e  

The sh ie ld  weight shown i n  Fig. 13 i s  somewhat lower than t h e  sh ie ld  
weights shown f o r  Space Base i n  Fig. 12 .  This r e f l e c t s  t he  reduced dose plane 
diameter for  S ta t ion  s ince no ro ta t ing  arms are present as they a r e  i n  Base. 
However, i n  order t o  keep sh ie ld  weight t o  a minimum and s t ay  within the  
25 rem dose constraint ,  a deployment boom i s  used t o  separate t h e  Reactor 
Power System from the  S ta t ion  module. 
about 10,000 pounds, and therefore,  t h i s  weight penalty i s  included i n  t h e  
system weight shown i n  Fig. 13. 

It i s  estimated t h a t  t h e  boom may weigh 

It i s  c l ea r  from t h a t  t he  reactor  system cannot meet t h e  s ing le  
launch c r i t e r i a  f o r  about 20,000 pounds i s  al located t o  t h e  
S ta t ion  power system). 
t h e  isotope system and the  Solar Array. 

Further, t he re  i s  l i t t l e  difference i n  weight between 

Summary: Space StationlBase requirements have been shown, the  character-  
i s t i c s  of Nuclear Power Systems discussed, and comparisons of t he  candidate . 
power systems were made against  a set  of s implif ied c r i t e r i a .  Obviously t h e  
t rade-offs  involved i n  the  ac tua l  se lec t ion  process a r e  far more complex and 
encompass many fac tors  not included i n  t h i s  discussion. However, it i s  in-  
ev i tab le  t h a t  t h e  reader w i l l  draw conclusions as t o  which systehs f i t  bes t  
t h e  c r i t e r i a  given. 

A t  t h i s  time, t he  Space Station/Base contractors have selected t h e  
Reactor Brayton as t h e  preferred power system f o r  Space Base. 
t i o n  f o r  Space S ta t ion  has not ye t  been made. I n  any event, these a re  ten ta-  
t i v e  recommendations only. Final  se lec t ion  w i l l  not be made f o r  some t i m e  
and must take i n t o  account changing requirements, technology, and development 
s t a tus ,  as well as overa l l  NASA objectives.  

The recommenda- 
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